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ABSTRACT

The seminal work of Huggett [“The risk-free rate in heterogeneous-agent incomplete-insurance
economies”, Journal of Economic Dynamics and Control, 1993, 17(5-6), 953-969] showed that in a
stationary recursive equilibrium, there exists a unique stationary distribution of agent types.
However, the question remains open if an equilibrium’s individual state space might turn out
to be such that either: (i) every agent’s common borrowing constraint binds forever, so that the
distribution of agents will be degenerate; or (ii) that the individual state space might be un-
bounded. By invoking a simple comparative-static argument, we provide closure to this open
question. We show that the equilibrium individual state space must be compact and that this
set has positive measure. From Huggett’s result that there is a unique distribution of agents in
a stationary equilibrium, our result implies that it must also be one that is nontrivial or nonde-
generate.
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1. INTRODUCTION

The seminal quantitative heterogeneous-agent framework of Huggett [1993] describes a station-

ary recursive competitive equilibrium by a Markov operator on an endogenous compact space of

probability measures. Huggett [1993, Theorem 2] proved that for a given (stationary equilibrium)

interest rate, there is a unique distribution of agents as a fixed point of this Markov operator.1

To establish the second result [Huggett, 1993, Theorem 2] certain sufficiency conditions in The-

orem 2 of Hopenhayn and Prescott [1992] are required to be satisfied by the model. One of the

sufficient conditions is compactness of agents’ equilibrium individual state space, denoted by S.

Huggett [1993] showed that in a stationary recursive equilibrium, each agent indexed by an asset-

endowment pair (a, e) ∈ S would always remain in the set S.

In this note, we amend the proof of Lemma 3 in Huggett [1993] and show that in a stationary

recursive equilibrium, the individual state space must be compact and of a positive measure. We

do so by invoking a simple comparative statics argument. That is, we provide the rationale for an

implicit assumption used in proving Lemma 3 of Huggett [1993]. This implies that a stationary

recursive equilibrium distribution cannot be degenerate. Our result affirms what Huggett [1993]

showed in terms of the existence of a stationary recursive equilibrium and the corresponding sta-

bility property of its equilibrium distribution.

More generally, one may ask if a sequential competitive equilibrium exists; and if so whether

there is a (payoff equivalent) recursive equilibrium associated with a given sequential equilib-

rium.2 Krebs [2004] considered an incomplete-markets exchange economy, but with a finite num-

ber of consumers with “nonbinding endogenous borrowing (short-sale) constraints”.3 Krebs [2004,

Proposition 2] showed that there is no recursive equilibrium given by time-invariant continuous

functions over a compact extended equilibrium state space, if these constraints never bind. For

a recursive equilibrium to exist, markets must be effectively complete or borrowing constraints

must be effectively ad-hoc [Krebs, 2004, Proposition 1]. The latter case relates to our focus on the

Huggett [1993] economy with exogenous borrowing constraints. This is also the case assumed in

Miao [2006].4

Also, Miao [2006, Assumption 5] introduced a uniform upper bound on labor allocations to

guarantee an equilibrium upper bound on assets (via market clearing conditions and regularity

assumptions on the production function). However, we extend the proof of Huggett [1993, Lemma

3] that there is a finite endogenous upper bound on agents’ asset state space, to guarantee that it

must be larger than the borrowing-constraint lower bound. In contrast to Krebs [2004] and Miao

[2006], we directly restrict attention to a stationary recursive equilibrium, since the main result

1In the setting of Huggett [1993], the key insight on the risk-free rate anomaly arising from the perspective of rep-
resentative agent models, was obtained by way of incomplete asset markets (single non-state contingent asset) and
precautionary saving motives arising from an exogenous borrowing constraint. This framework is one of the key foun-
dations for further quantitative research using heterogenous agent macroeconomics. In this class of models, important
questions such as asset pricing puzzles [see e.g. Huggett, 1993; Aiyagari, 1994], and fiscal policy and taxation [see e.g.
Heathcote, 2005], can be addressed.

2A sequential (competitive) equilibrium is characterised in terms of infinite-sequences of allocations and relative
prices satisfying the requirements of general equilibrium.

3These are called endogenous constraints in that they only rule out Ponzi schemes and nothing else.
4Miao [2006] proved the existence of a sequential competitive equilibrium in an economy with a continuum of

heterogeneous agents and finite-state-space aggregate shocks. Miao [2006] showed that for any sequential competitive
equilibrium, there exists a payoff-equivalent recursive equilibrium representation.
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of Miao [2006, Theorem 3] on the existence of a recursive equilibrium from a given sequential

equilibrium can be adapted to the special-case Huggett [1993] model.

A related literature, although in the context of the Brock and Mirman [1972] stochastic growth

model, is also concerned with strengthening results on existence and uniqueness of nontrivial

stationary distributions [see e.g. Chatterjee and Shukayev, 2008; Kamihigashi, 2006] while relaxing

the number of hypotheses required. The enterprise in this paper is related to this literature, but in

the context of the Huggett model.

2. HUGGETT’S MODEL

In this section we first revisit the Huggett [1993] model. Then we provide a brief discussion on

the notion of an endogenously compact individual state space and its implication for the existence

of a unique distribution of agents in a stationary recursive equilibrium. Hereinafter, we will use

the term “stationary equilibrium” synonymously with “stationary recursive equilibrium”.

In the Huggett model, time is discrete, and each period is indexed by t ∈ N := {0, 1, ...}.5

The population of agents has mass 1. Each measure zero agent receives a stream of stochastic

endowment of consumption good. Let E = {el , eh}, where eh > el , be the set of endowment

realizations. Each random sequence (et)t∈N is governed by a given Markov chain (π, π0) on E,

where π is the stochastic matrix and π0 ∈ ∆(E) is the initial unconditional distribution on E that

belongs in the simplex ∆(E). π(e′|e) := Pr{et+1 = e′|et = e} > 0, e′, e ∈ E, is independent of t,
and any other agent’s realization of e. Let A := [a,+∞) be the space of possible asset levels. The

parameter a is interpreted as an exogenous borrowing constraint. Denote the product individual

state space as X := A× E.

2.1. An individual’s decision problem. The individual state is x := (a, e) ∈ X. The individual takes

as given the aggregate price q > 0. Suppose in an equilibrium there is a set S := [a, a]× {el , eh} ⊂
X. Denote the Borel σ-algebra generated by open subsets of S as B(S). The dependence of the

equilibrium q on the aggregate state given by a probability measure ψ on (S,B(S)) is implicit.6

Each agent has a common subjective discount factor β ∈ (0, 1), and identical per-period utility

u : R+ → R. The function u is strictly increasing, strictly concave, and twice continuously dif-

ferentiable. Each agent chooses consumption (c) and saving in terms of a single asset (a′). Let the

agent’s feasible action correspondence be Γ(q) : A × E → B(R+ × A), where at each slice of Γ

indexed by (x; q), we have a description of the feasible choice set of an agent currently named x:

Γ(x; q) =
{
(c, a′) : a + e ≥ c + a′q, c ≥ 0, a′ ≥ a

}
.

Denote (x; q) 7→ v(x; q) ∈ R as an agent’s value function. Each agent’s Bellman equation is

v(x; q) = max
(c,a′)∈Γ(x;q)

{
u(c) + β ∑

e′∈E
v(a′, e′; q)π(e′|e)

}
, (1)

with associated optimal decision rule (x; q) 7→ â(x; q), such that at (x; q), a′ = â(x; q).

5As is the usual convention, we may drop the explicit time-t subscript on variables, e.g. x := xt and x′ := xt+1.
6In Huggett [1993], since the emphasis is on a notion of recursive stationary equilibrium where q is constant, we don’t

have to explicitly carry around the distribution of agent types ψ, as a relevant state variable. Instead, we only make the
agents’ problems dependent on q as a scalar parameter.
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2.2. Compact equilibrium individual state space S ⊂ X. The notion of a stationary equilibrium

is defined in Huggett [1993, p.956]. Given the individual endowment processes’ Markov operator,

π : ∆(E) → ∆(E), and, an optimal decision rule, (x; q) 7→ â(x; q), we can induce a time-invariant

probability measure ψ on the measurable space (S,B(S)) satisfying an equilibrium Markov oper-

ator:

ψ(B) =
∫

S
P(x, B)dψ, ∀B ∈ B(S), (2)

where P : S×B(S)→ [0, 1] is the equilibrium transition probability function.7

In Theorem 1, Huggett [1993] provides some sufficient conditions on the model such that given

q, the solution to each agent’s Bellman equation problem has some nice properties. Specifically,

Theorem 1 in Huggett [1993] establishes that the optimal â : X → [a, ∞) is continuous, is either

strictly increasing in a, if a > a, or is nondecreasing in a if a = a.

Theorem 1 and Lemmata 1-3 in Huggett [1993] show that each agent’s optimal decision function

for credit holdings, â : X → [a, ∞), has the typical shape as in Figure 1. In particular, this decision

rule has the following properties:

(1) If the current endowment is el , and, if the borrowing constraint is not binding, then â(·, el)

is well below the 45◦-line in (a, a′)-space. That is, an agent who is not currently credit con-

strained in terms of his asset choice for the following period, and who continues to face

a sequence of low endowment realizations, will be reducing his asset level in each corre-

sponding subsequent periods (Lemma 1) until his asset level hits the borrowing constraint,

a, where either the agent is constrained to just borrow a in the subsequent period; or

(2) If the agent has high endowment, eh, the agent will start saving, but there is an asset level,

a, such that the policy function at eh, â(·, eh), crosses the 45◦-line in (a, a′)-space. This is

proved by Lemma 3, which uses both Lemma 1 and Lemma 2.

Thus, in an equilibrium, if there is to be an endogenous a, as shown in Lemma 3 in Huggett [1993],

which is the smallest fixed point satisfying â(a, eh) = a, then it is straightforward to deduce that

S := [a, a]× {el , eh} is an endogenously compact metric space. That is, each agent x beginning in S
will always stay within S, or the equilibrium asset decision rule will be â : S→ [a, a].

a′

a

a′ = a â(·, eh)

â(·, el)

a
a

a

FIGURE 1. Characterization of optimal policy function â : X → R. When e = eh, for
each a, â(a, eh) > â(a, el). If â(a, e) ≥ a binds, then â(·, e) is nondecreasing in a.

7The details are discussed very nicely in Huggett [1993].
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Theorem 2 of Huggett, applying Theorem 2 in Hopenhayn and Prescott [1992], provides suffi-

cient conditions and shows (by convergence in the weak topology) the existence of a unique dis-

tribution ψ satisfying (2), for a given q consistent with a stationary equilibrium. These conditions

in turn include the requirement that S is a compact metric space.

3. A FURTHER EXPOSITION

Huggett’s Lemma 3 states that under the conditions of his Theorem 2, there exists a fixed point

a satisfying â(a, eh) = a.8 To prove this result, Huggett supposed the contrapositive that there does

not exist any a such that â(a, eh) = a. Note that this implies also that at a, we have â(a, eh) > a.

From this, Huggett obtained the proof by contradiction.

In this section, we expound on Huggett’s results and show that the endogenous (i.e. stationary

equilibrium) upper bound a on assets is nontrivial. That is, we show that a < a < ∞. In doing

so, we also provide a rationale for why Huggett made only one contrary hypothesis in his proof

of Lemma 3 in Huggett [1993], and in particular, why â(a, eh) > a. This implication from Lemma

3 in Huggett is crucial toward a result that in a stationary equilibrium of his model, there exists a

unique distribution of agent types.

If we consider a stationary equilibrium (as in Huggett) with a unique distribution of agents,

then implicit in this is the requirement that a itself cannot be a fixed point satisfying â(a, eh) = a.

That is, if we are interested in a stationary equilibrium S := [a, a]× E where a 6= a, then a contrary

hypothesis to this must consider three possible cases:

H1. â(a, eh) < a for a > a and â(a, eh) = a for a = a,

H2. â(a, eh) > a for a > a and â(a, eh) = a for a = a, and

H3. There is no a such that â(a, eh) = a.

These three contrary hypotheses are depicted by the typical graphs in Figure 2. In establishing the

result on the existence of an endogenously compact S by contradiction in Lemma 3, Huggett [1993]

made only the contrary hypothesis (H3) that there is no a such that â(a, eh) = a.

It turns out, from our Lemma 1 below, that only one of these contrary hypotheses is possible (i.e.

H3), as was assumed in Huggett [1993]. We thus provide a further exposition and confirmation of

Huggett’s proof to his Lemma 3. Moreover, in conjunction with Huggett’s Lemma 3, we can further

deduce (from Theorem 1 below) that in a stationary equilibrium, the endogenous S := [a, a] ×
{el , eh} must be a nontrivial compact metric space, so that the equilibrium probability measure of

agents on the measure space (S,B(S)) is unique and nondegenerate.

Lemma 1. Assume the conditions in Theorem 2 of Huggett [1993]. In a stationary equilibrium with
equilibrium price of credit q, each agent’s optimal decision rule â(·, ·; q) : S → [a, ∞) must be such that
â(a, eh; q) > â(a, el ; q).

Proof. Suppose to the contrary that in a stationary equilibrium at price q, we have â(a, eh) ≤ â(a, el).

Since by construction, it is not possible to have â(a, e) < a for all e ∈ E, then it suffices to suppose

to the contrary that â(a, eh) = â(a, el) in a stationary equilibrium. We want to show that â(a, eh) =

â(a, el) contradicts some requirements of stationary equilibrium. To do so, we will characterize

8These conditions are: (i) 0 < β < q; (ii) a + el − aq > 0; and (iii) π(eh|eh) ≥ π(eh|el). Hereinafter, we suppress
the explicit dependency of each agent’s decision on the constant price q. Hence, â(a, e) should be understood to mean
â(a, e; q), where q is the price of credit in a stationary equilibrium.
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a′

a

a′ = a
â(·, eh)

â(·, el)

a
a

(A) Case H1

a′

a

a′ = aâ(·, eh)

â(·, el)

a
a

(B) Case H2

a′

a

a′ = a
â(·, eh)

â(·, el)

a
a

(C) Case H3

FIGURE 2. In proving Lemma 3 in Huggett [1993], suppose there is no a (> a)
such that â(a, eh) = a. A priori there may be three possible cases for the component
function â(·, eh) that would satisfy this hypothesis. We can rule out cases H1 and
H2.

individuals’ credit demand behavior under this hypothesis; first, at the current states where agents

begin with maximal borrowing, and second, at the states where they do not.

First, consider agents at the current state (a, e) for each e ∈ E. Denote the consumption at the

current maximal credit a in each endowment state el and eh as ca
l and ca

h, respectively. These are,

respectively, given by the per-period budget constraints as

ca
l = a + el − aq,

and,

ca
h = a + eh − aq.

The last terms on the RHS of each constraint above are, respectively, due to the fact that â(a, el) = a,

as implied by Theorem 1 and Lemma 1 in Huggett [1993], and â(a, eh) = â(a, el) by hypothesis. We

now characterize the stationary equilibrium behavior of agents at (a, e), where e ∈ E, by induction.

Consider the current period t ≥ 0 for an agent whose state is (a, el). Since â(a, el) = a, equilibrium

current consumption at this realized state (a, el) is ca
l . The Kuhn-Tucker conditions for this agent

yield

uc(c
a
l ) ≥ βq−1 ∑

e′∈E
π(e′|el)uc[a + e′ − â(a, e′)q]. (3)
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If the agent is currently (a, eh), then, current consumption is ca
h. Since by hypothesis, this agent

optimally demands credit at â(a, eh) = a, the Kuhn-Tucker conditions for this agent give

uc(c
a
h) ≥ βq−1 ∑

e′∈E
π(e′|eh)uc[a + e′ − â(a, e′)q]. (4)

Beginning from t + 1, it must be that these agents at (a, e′) will remain choosing â(a, e′) = a,

for any realization of e′ ∈ E, since â(a, el) = a, and the hypothesis that â(a, eh) = â(a, el), are

optimal and stationary equilibrium selections at the respective states. This implies that equilibrium

consumption in period t + 1 will again, either be ca
l if the individual’s state is (a, el), or, ca

h if the

individual becomes (a, el). Then the respective Kuhn-Tucker weak inequalities in (3) and (4) carry

over to t+ 1. The same optimal choices will be made beginning in any subsequent period τ ≥ t+ 1.

In other words, these agents beginning from (a, e) are stuck forever rolling over their debt at the

maximal credit level a, regardless of the realization of their stochastic endowment each period,

e ∈ E.

Second, consider any other agent beginning at some (a, e), where a > a. By Theorem 1 in

Huggett [1993], â(a, e) is strictly increasing in a for all (a, e) at a given (here stationary equilibrium)

q, such that â(a, e; q) > a. Consider the function â(·, el). By Lemma 1 in Huggett [1993], â(a, el) < a
for a > a. Pick any agent beginning at (a, el), where a > a. Define a sequence {wn} by w1 = a,

w2 = â(w1, el), w3 = â(w2, el), .... Then, {wn} → a monotonically. Now, consider â(a, eh). There are

four possible cases.

C.1 â(a, eh) > a for all a > a. Define a sequence {xn} by x1 = a, x2 = â(x1, eh), x3 = â(x2, eh), ....

Then, {xn} → ∞ monotonically.

C.2 â(a, eh) < a for some a ∈ (a, a∗), where a∗ > a, and, â(a, eh) > a for some a ∈ (a∗, ∞). If

a ∈ (a, a∗), then the agent beginning from (a, eh), and receiving endowment eh forever, will

follow a similar monotone sequence as {yn} → a. If a ∈ (a∗, ∞), then the agent beginning

from (a, eh), and receiving endowment eh forever, will follow a similar monotone sequence

as {xn} → ∞. The agent beginning at (a∗, eh), and receiving endowment eh forever, remains

there forever. However, this agent at (a∗, eh), like all other agents elsewhere, will receive el

with positive probability π(el |eh) next period. Hence (a∗, eh) is not a stable attractor.

C.3 â(a, eh) > a for some a ∈ (a, a∗), where a∗ > a, and, â(a, eh) < a for some a ∈ (a∗, ∞). This

case has two fixed points: one at a and the other at a∗ such that â(a∗, eh) = a∗.
C.4 â(a, eh) < a for all a > a. Define a sequence {yn} by y1 = a, y2 = â(y1, eh), y3 = â(y2, eh), ....

Then, {yn} → a monotonically.

Now we can consider the implications of all the possible cases C.1–C.4. From the (supposedly)

equilibrium behavioral characterization above, and, if cases C.1 and C.2 above hold, then we can

deduce that the equilibrium individual state space S = [a, ∞)× E is not compact, since [a, ∞) is not

closed and bounded. This violates a sufficient condition for the existence of a unique stationary

probability measure of agents: Huggett [1993, Theorem 2] and Hopenhayn and Prescott [1992,

Theorem 2]. If Case C.3 is true in a stationary equilibrium, this implies that there are two stationary

probability measures on the compact set S = [a, a∗]× E. One of the two is degenerate and cannot

be consistent with equilibrium – i.e. if the economy began with all agents holding asset a then all

agents remain there forever, since Case C.3 assumed that â(a, eh) = a. However, in this case the
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excess demand for credit is exactly a < 0; it violates credit market clearing which requires zero

excess demand for credit, i.e.,
∫

S â(a, e; q)dψ = 0. Therefore â(a, eh) > a in this case.

If case C.4 prevails, then all agents will be optimally demanding the maximal credit level a.

However, in this case, it also violates credit market clearing which requires zero excess demand

for credit, i.e.,
∫

S â(a, e; q)dψ = 0. since the excess demand for credit in Case C.4 is exactly a < 0.

Therefore, the hypothesis that â(a, eh) = â(a, el) is a stationary equilibrium optimal selection

contradicts the definition of a stationary equilibrium. In a stationary equilibrium, agents’ best

responses at any (a, e) must then have the property that â(a, eh) > â(a, el). �

Lemma 1 above thus provides the reason why it suffices to make only one case (i.e. Case H3 in

Figure 2) of a contrary hypothesis when proving Huggett’s Lemma 3. This leads us to the following

theorem that reinforces the arguments summarized in Lemma 3 of Huggett [1993].

Theorem 1. Under the assumptions of Theorem 2 in Huggett [1993], the decision rule â(a, eh; q) in a
stationary equilibrium has a unique fixed point a∗ < ∞, i.e., a(a∗, eh; q) = a∗, and a∗ 6= a.

Proof. By Theorem 1 in Huggett, â(·, ·; q) : [a, ∞) × E → [a, ∞) is continuous on [a, ∞) for each

e ∈ E, strictly increasing in a for all (a, e) such that â(a, e; q) > a. Combining our Lemma above,

which says â(a, eh; q) > a, and Lemma 3 in Huggett [1993], which states the existence of a fixed

point a∗ satisfying â(a, eh; q) = a, we can then conclude that a < a∗ < ∞. Then, let a = a∗. �

Therefore, in a stationary equilibrium, the endogenous S := [a, a]× {el , eh} must be a nontriv-

ial compact metric space. Our Theorem then implies that in a stationary equilibrium, there is a

unique distribution of agents in the Huggett model which is nondegenerate. This is useful a priori
information when numerically computing approximate solutions to this class of models.
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