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LINEAR STOCHASTIC DIFFERENCE EQUATIONS

SETUP

Consider a stochastic process for our state variables described by the canonical first-order
linear stochastic difference equation (LSDE).1 In some theories and applications (e.g. approxi-
mate linearized real or monetary business cycle models) that we will encounter, the solution to
the (recursive competitive) equilibrium is approximately given by:

xt+1 = A0xt + Cwt+1, wt+1 ∼ i.i.d.(0, I) (1)

The models may also induce a relationship between statistically observable variables yt and the
state variables in the theory xt such that

yt = Gxt. (2)

These items in (1) and (2), including the distribution of the shocks wt, define a Markov kernel
for the economy. (How?)

Consider a small monetary policy model as example. The state vector and the observed vector
may look like this

xt =


gt
at
πt
ỹt

 , yt =

 πt
ỹt
rt

 .

where the three variables in yt having data counterparts, respectively, are inflation, output gap,
and the nominal interest rate. The variables (gt, at) could be exogenous random variable that
are Markov processes themselves and have the interpretation of exogenous forcing variables
or serially-correlated shocks – e.g. respectively, a government spending (demand) shock and a
technology (supply) shock.

1. MOMENTS OF THE LSDE

1.1 Covariance stationary mean
To ensure that {xt} is covariance stationary we require that A0 be a stable matrix. Now

take expectations on both sides of (3):

Ext+1 = A0Ext.

Let µt := Ext. Then we can also write the above as:

µt+1 = A0µt.

A stationary mean is one that satisfies Ext+1 = Ext = µ which can be found as

(I −A0)µ = 0.

So in this case, since A0 is a stable matrix, µ is a vector of zeros. (Why?) Note that we have

µt = (A0)
tµ0.

If A0 is stable, then,

lim
t→0

µt → µ.

1This note references Sections 2.1-2.3 in Ljungqvist and Sargent (2004).
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Note that if the state transition law has a constant

xt+1 = κ+A0xt + Cwt+1, wt+1 ∼ i.i.d.(0, I) (3)

then the stationary mean is given by

(I −A0)µ = κ⇒ µ = (I −A0)
−1κ.

We can easily transform the variable so that the LSDE has no constant term κ. In that case,
the expanded matrix Ã0 will have some unit eigenvalue(s). (Why?)

1.2 Covariance stationary covariances
Given µ we compute stationary covariance matrix as:

E (xt+1 − µ) (xt+1 − µ)′ = A0E (xt − µ) (xt − µ)′A′0 + CC ′

since Ewt+1w
′
t+1 = I .

Define Σx (0) = E (xt+1 − µ) (xt+1 − µ)′ = E (xt − µ) (xt − µ)′ as the stationary covari-
ance matrix.

And Σx (0) satisfies:

Σx (0) = A0Σx (0)A′0 + CC ′

Stationary covariance matrix satisfies

Σx (0) = A0Σx (0)A′0 + CC ′

This is a discrete Lyapunov equation in Σx (0). We can in practice solve this as a recursion
starting with an initial positive definite guess Σ0

x = I:

Σs+1
x = A0Σ

s
xA
′
0 + CC ′

And since A0 is stable lims→∞Σs
x → Σx (0).

We can also compute autocovariances at different time intervals, j. We can write

xt+j = A0xt+j−1 + Cwt+j

xt+j − µt+j = A0 (xt+j−1 − µt+j−1) + Cwt+j

= A0 [A0 (xt+j−2 − µt+j−2) + Cwt+j−1] + Cwt+j

...

= Aj
0 (xt − µt) + Cwt+j +A0Cwt+j−1 + ...+Aj−1

0 Cwt+1

Postmultiply with (xt − µt)′ and take expectations:

E (xt+j − µt+j) (xt − µt)′ = Aj
0E (xt − µt) (xt − µt)′

Σx (j) = Aj
0Σx (0) .

We worked out Σx (0). So autocovariance at interval j, Σx (j) is a function of A0 and Σx (0).
Σx (j) is independent of t. It depends only on j.

Observation equation: yt = Gxt. Then we can also find

Σy (j) = E (yt+j − µy,t+j) (yt − µy,t)′ = GΣx (j)G′

Note: C representing noise statistics does not appear in the calculation of Σx (j) for all j.

2. IMPULSE RESPONSE FUNCTIONS

Lag operator notation: Lxt+1 := xt.
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Suppose eigenvalues of A0 are less than 1. Write

xt+1 = A0xt + Cwt+1

as

(I −A0L)xt+1 = Cwt+1

Neumann expansion

(I −A0L)−1 = I +A0L+A2
0L

2 + ...

Multiply both sides of

(I −A0L)xt+1 = Cwt+1

with (I −A0L)−1 to get

xt+1 =
(
I +A0L+A2

0L
2 + ...

)
Cwt+1 =

∞∑
j=0

Aj
0Cwt+1−j

i.e. a finite lag VAR process has an infinite VMA representation.
Alternative moving average representation. Iterate

xt+1 = A0xt + Cwt+1

forward from t = 0:

x1 = A0x0 + Cw1

x2 = A0x1 + Cw2 = A2
0x0 + Cw2 +A0Cw1

...

xt = At
0x0 +

t−1∑
j=0

Aj
0Cwt−j

and

yt = Gxt = GAt
0x0 +G

t−1∑
j=0

Aj
0Cwt−j .

Impulse response functions: Either representation has Aj
0C as the response of xt+1 to wt+1−j

at each lag j. E.g. a contribution of a shock wt−j to xt is Aj
0C. Also, its contribution to yt is

GAj
0C.

3. FORECASTING

Markov property. Time-t conditional forecast:

Etxt+j = Aj
0xt

where Etxt+1 = E (xt+1|xt, xt−1, ..., x0).
If yt = Gxt and we have

Et

∞∑
j=0

βjyt+j = G (I − βA0)
−1 xt.

provided βA0 has eigenvalues less than 1 in modulus.
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EXERCISE 1. Suppose our state space model is AR(1),

xt+1 = ρxt + εt+1

yt = βxt, |ρ| < 1

where xt, yt, εt ∈ R.
Compute
1. the stationary mean, variance, and the autocovariance function of {yt} .
2. the impulse response function for {yt}.
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