Physiology of Defecation and Mechanisms of Constipation

Christian Stricker
Associate Professor for Systems Physiology
ANUMS/JCSMR - ANU

Christian.Stricker@anu.edu.au
WARNING

This material has been reproduced and communicated to you by or on behalf of the Australian National University pursuant to Part VB of the Copyright Act 1968 (the Act).

The material in this communication may be subject to copyright under the Act. Any further reproduction or communication of this material by you may be the subject of copyright protection under the Act.

Do not remove this notice.
Aims

At the end of this lecture students should be able to

• locate anatomical elements that are crucial for defecation;
• outline the hierarchy of control systems for defection;
• recognise the unconscious and voluntary control elements involved in defecation;
• explain the sequence of events that initiate, maintain and end defecation;
• discuss what constipation is; and
• list some mechanisms that might lead to constipation.
Contents

• Role of colon
• Facts about faeces
• Colonic mass movements
• Anatomical elements involved in defecation
• Hierarchy of control systems
• Phases of defecation
• Constipation including some pathophysiology
Physiological Role of Colon

• Reservoir for intestinal content.
• Fluid absorption: 500 - 1500 mL of chyme entering colon is reduced to 100 - 200 mL.
• Electrolyte absorption: Na^+, HCO_3^-, Cl^- (same concept as in kidney; in colonic crypt cells, HCO_3^- exchange for Cl^- largely aldosterone-dependent): pH > 7.4.
• Bacterial flora “useful” for host: $10^{11} - 10^{12}$ bact/mL. Production of vitamin K and B_12; fermentation vs. putrescence; gas production (flatus: swallowed air; methane, H_2 and CO_2).
• Not necessary for life (colectomy…); consequences though for volume and electrolyte regulation.
Composition of Feces

- ~3/4 is water
- Of remainder, ~1/3 food residue (8%); rest produced “locally” (bacteria, epithelia).
- Quantity dependent on various factors like
 - food intake (quality and quantity), water content, and drugs, etc.
Colonic Motility

- Chyme is propelled towards sigmoid, ultimately to anus.
 - Motility: Segmentation (not peristalsis).
- “Normal” passage time: 10 - 20 h (highly variable).
- Mass movements 2 - 3 x / day (postprandial), starting in transverse colon.
 - Associated with defecation
- Initiated by food intake:
 - Gastrin (hormone)
 - Gastrocolic reflex (ANS)
 - Duodenocolic reflex (ANS)
Colonic Mass Movements

- Food intake stimulates colonic movements.
- Mass movements start in transverse colon.
- Contraction is “long”-lasting (few minutes).
- Within few minutes, sigmoid is filled: urge as prelude to defecation.

Despopoulos & Silbernagl 2003
Defecation in a Wider Context

- Hierarchy of reflexes coupled with learnt behaviour.
- At interface between voluntary and autonomic (uncontrollable) nervous control; prime target for psychological and psycho-social interference:
 - Stress increases frequency of voiding.
 - Shortly before going into action, a large number of soldiers in war involuntarily void (Patton report after WWII; “shit scared” - angst).
 - Coupled with urogenital reflexes (share control system in sacral cord).
- Psycho-socially often associated with “rituals”.
- Often compromised in disease: neurological, muscular, neoplastic, *etc*.
- Most people in hospitals have defecation difficulties…
Four Phases of Defecation

• In between defecation sessions, **continence ①** is crucial.

• Act of defecation consists of:
 - **Initiation of reflex ②**: urge caused by mass movement.
 - **Defecation reflex ③** (or voiding reflex): opening of the anus.
 - **Closure reflex ④**: closing of the anus.

• All systems have to work in conjunction with each other to accomplish efficient voiding: **all 3 nervous systems** have to participate (Enteric, Autonomic and Central NS).

• Higher-order control systems are there to **amplify/synchronize** ENS response.

• Under pathological conditions, synchronization might be hard to achieve.
• Most control systems are out of reach of voluntary control.
• Inclusion of several control systems guarantees sufficient amplification and synchronization of efferent response to initiate voiding.
1. **Anatomical Elements of Continence**

- **1st line of defence**: controlled by ENS.
 - Kohlrausch’s fold together with upright position.
 - Circular smooth muscles.

- **2nd line of defence**: controlled by ENS / ANS.
 - Internal anal sphincter (smooth muscle): 70 - 85% of sphincter pressure.
 - Venous spongy body (haemorrhoids): 10 - 20% of sphincter pressure.

- **3rd line of defence**: controlled by CNS (spinal reflexes).
 - External anal sphincter (striated muscle).
 - Puborectal muscles (*levator ani*; striated muscle).
Physiology of Anal Continence

- ENS constricts internal sphincter and relaxes sigmoid (reservoir).
- To keep anus closed, both internal and external sphincters are tonically active; most force is produced by internal sphincter.
② Initiation of Defecation: Filling

- Initiation of defecation is accomplished by
 - mass movements (gastrocolic reflex, hormones), or
 - small movements in sigmoid (distension/enema), or
 - emptying of sigmoid (increase in abdominal pressure).

- Result is filling of ampulla recti.

- Touch and/or pressure receptors signal via n. erigentes (plexus pelvicus - sympathetic; S₂ - S₄) a feeling of urge.

- Elicits either
 - recto-anal inhibitory reflex (B; ENS & ANS; leads to defecation), or
 - recto-anal contractile reflex (C; CNS; suppresses defecation).
Rectal filling (threshold is ~20 mL) causes
- recto-anal inhibitory reflex (ENS & ANS) with increase in smooth muscle tone in sigmoid (ENS); and
- urge, perceived in CNS: anorectal sampling via Krause end-bulbs, Golgi-Mazzoni bodies, genital corpuscles, Pacinian and Meissner’s corpuscles; gas - fluid - solid discrimination.

Initiation of Defecation
• Circular contraction of sigmoid (ENS) and relaxation of internal (ENS and ANS;) and external sphincters (CNS): amplification/synchronization of response.

• Behavioural response to urge:
 – Relaxation of external sphincter.
 – Straining: abdominal pressure↑, closure of glottis, etc.; change in position (crouching).
• Upon voiding, receptor relief/adaptation in *ampulla recti* removes inhibitory drive to internal sphincter (ENS, ANS indirectly): contraction of internal sphincter.
• Voluntary contraction of external sphincter closes anus off.
• Smooth muscles in sigmoid relax (ENS; re-establishing reservoir function).
Dynamics of Defecation (①-④)
Special Notes

• **Babies**: Control of Onuf’s nucleus (S_2-S_4) only established after ~2 years (maturation of spino-thalamic, cortico-spinal tracts and local networks): feeling of “urge” required for efficient “potty training”.

• **Paraplegic patients**
 – Can often perceive rectal filling as a vague sensation and discomfort (parasympathetic afferents?).
 – High spine lesions (tetraplegia) do not allow for any sensation.
 – Patients with spinal injuries typically suffer from **constipation**; to stimulate “uncontrolled” defecations, reflex might have to be initiated via enema, manual opening, etc.
Constipation

What is YOUR definition of constipation?
Perception of Constipation

• Very individual

• Objective criteria
 – Frequency
 – Stool weight: difficult to measure routinely; varies widely.
 – Consistency: difficult to assess objectively

• Subjective criteria (invaluable, hard to quantify)
 – Straining, difficulty
 – Sense of incomplete voiding
 – Discomfort, pain
 – Perception of “ideal” voiding
Constipation

- Definition: Constipation is passage of small amounts of hard, dry bowel movements, usually fewer than three times a week. After NIH 1999.

- People who are constipated may find it difficult and painful to have a bowel movement.

- Other symptoms of constipation include feeling bloated, uncomfortable, and sluggish.

- Prevalence:
 - Very high incidence of females (young adult).
 - Often a result of iatrogenic action (side effects of drugs).
 - Often associated with other underlying illnesses (diabetes, etc.; secondary constipation).
Common Causes of Constipation

• Not enough liquids.
• Poor diet; i.e. insufficient fibre in diet (< 20 g/d).
• Lack of exercise (mechanisms not well understood).
• Changes in life or routine such as pregnancy, old age, and travel.
• Particular foods (chocolate, etc.)
• Ignoring urge to have a bowel movement.
• Abuse of laxatives (chronic use).
• Medications (most common side effect).
• Irritable bowel syndrome.
• Anorectal disease.
• Problems with intestinal function (chronic idiopathic constipation.)
• Specific diseases such as multiple sclerosis and lupus.
Properties of Constipation

- With a few exceptions, transit times in proximal regions of GI tract normal: disease of the colon.
- Results in various degrees of subjective symptoms.
- Is associated with abnormalities secondary to increase in colonic luminal pressure and intravascular pressure in haemorrhoidal venous cushions: colonic diverticular disease, haemorrhoidal disease, anal fissures.
Causes of Constipation

• Secondary causes (most common)
 – Insufficient water and/or fibre: Dry/hard stool with sliding difficulties.
 – Side effects of drugs: Analgesics, anticholinergics, cation containing agents (Fe, Ca, etc.), neurally active substances (opiates, antihyper-tensives, ganglion blockers, etc.): biggest problem in hospitals.
 – Metabolic and endocrine: Diabetes, hypoparathyroidism, hypokalemia, porphyria, pheochromocytoma.

• Primary causes (rare - but not to be forgotten)
 – Myogenic:
 • Smooth muscle: some endocrine disorders
 • Striated muscle: dermatomyositis, pelvic floor damage, etc.
 – Neurogenic:
 • Intrinsic innervation
 – Damage to enteric nervous system (plexus myentericus): chronic constipation, aganglionic colon (Hirschsprung).
 • Extrinsic innervation
 – Afferent: neuropathy (diabetes), multiple sclerosis, trauma to n. erigentes (x-ray, iatrogenic, fractures, etc.), receptor adaptation, spinal lesions, etc.
 – Efferent: trauma to n. erigentes (plexus pelvicus; x-ray, iatrogenic, fractures, etc.).
 – Integrative: Chronic suppression of urge, Parkinson’s disease, cerebrovascular insults, etc.
 – Idiopathic: unknown cause.
Take-Home Messages

• Role of colon is to compact/portion chyme for defecation.
• Defecation is initiated by rectal distension.
• THE major element for continence is the internal sphincter, which is under unconscious control.
• All three nervous systems (ENS, ANS and CNS) are involved in the control of defecation.
• Spinal injury patients are typically constipated; amplification of afferent stimuli can help to initiate “unconscious” defecation.
• Suppression of urge to defecate can lead to constipation.
• Constipation is the most highly ranked patient complaint.
Which of the following sequences correctly represents the top-down hierarchy (from highest to lowest control levels) involved in establishing continence?

A. autonomic nervous system → parasympathetic fibres → enteric nervous system → brain centres → smooth muscle/mucosa/vasculature.

B. parasympathetic fibres → brain centres → autonomic nervous system → enteric nervous system → smooth muscle/mucosa/vasculature.

C. brain centres → parasympathetic fibres → autonomic nervous system → enteric nervous system → smooth muscle/mucosa/vasculature.

D. autonomic nervous system → brain centres → parasympathetic fibres → enteric nervous system → smooth muscle/mucosa/vasculature.

E. brain centres → autonomic nervous system → parasympathetic fibres → enteric nervous system → smooth muscle/mucosa/vasculature.